Author: Christopher C. Leary

Publisher: Lulu.com

ISBN:

Category: Education

Page: 365

View: 118

At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Godel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.

Author: Raymond M. Smullyan

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 288

View: 134

Written by a creative master of mathematical logic, this introductory text combines stories of great philosophers, quotations, and riddles with the fundamentals of mathematical logic. Author Raymond Smullyan offers clear, incremental presentations of difficult logic concepts. He highlights each subject with inventive explanations and unique problems. Smullyan's accessible narrative provides memorable examples of concepts related to proofs, propositional logic and first-order logic, incompleteness theorems, and incompleteness proofs. Additional topics include undecidability, combinatoric logic, and recursion theory. Suitable for undergraduate and graduate courses, this book will also amuse and enlighten mathematically minded readers. Dover (2014) original publication. See every Dover book in print at www.doverpublications.com

Author: Richard E. Hodel

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 491

View: 394

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert's Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

Author: Elliot Mendelsohn

Publisher: Springer

ISBN:

Category: Science

Page: 342

View: 386

This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.

Author: Elliott Mendelson

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 440

View: 261

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.

Author: Peter B. Andrews

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 390

View: 557

In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

Author: Wolfgang Rautenberg

Publisher: Springer

ISBN:

Category: Mathematics

Page: 320

View: 327

Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.

Author: H.-D. Ebbinghaus

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 291

View: 866

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Author: Hans Hermes

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 244

View: 713

This book grew out of lectures. It is intended as an introduction to classical two-valued predicate logic. The restriction to classical logic is not meant to imply that this logic is intrinsically better than other, non-classical logics; however, classical logic is a good introduction to logic because of its simplicity, and a good basis for applications because it is the foundation of classical mathematics, and thus of the exact sciences which are based on it. The book is meant primarily for mathematics students who are already acquainted with some of the fundamental concepts of mathematics, such as that of a group. It should help the reader to see for himself the advantages of a formalisation. The step from the everyday language to a formalised language, which usually creates difficulties, is dis cussed and practised thoroughly. The analysis of the way in which basic mathematical structures are approached in mathematics leads in a natural way to the semantic notion of consequence. One of the substantial achievements of modern logic has been to show that the notion of consequence can be replaced by a provably equivalent notion of derivability which is defined by means of a calculus. Today we know of many calculi which have this property.

Author: Alonzo Church

Publisher: Princeton University Press

ISBN:

Category: Mathematics

Page: 378

View: 784

Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979 At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.

Author: Donald Barnes

Publisher: Springer

ISBN:

Category: Mathematics

Page: 123

View: 198

This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a sub stantial course on abstract algebra. Consequently, our treatment ofthe sub ject is algebraic. Although we assurne a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of . the exercises. We also assurne a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model oflogic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based-rather, any conclusions to be drawn about the foundations of mathematics co me only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.

Author: Jerome Malitz

Publisher: Springer

ISBN:

Category: Mathematics

Page: 198

View: 969

This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prere quisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III. An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest. The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course. The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are devel oped step by step with hints in the problems. Such theorems are not used later in the sequence.

Author: Michal Walicki

Publisher: World Scientific Publishing Company

ISBN:

Category: Mathematics

Page: 304

View: 825

This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic — their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules — of a high, though often neglected, pedagogical value — aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.

Author: Agustin Willmott

Publisher: Larsen and Keller Education

ISBN:

Category:

Page: 226

View: 613

Mathematical logic is a subfield of mathematics that is concerned with the application of formal logic to mathematics. It is closely associated with the foundations of mathematics, metamathematics and theoretical computer science. The study of the deductive power of formal proof systems and the expressive power of formal systems are the unifying themes in mathematical logic. Set theory, recursion theory, proof theory and model theory are the primary subfields in mathematical logic. Each of these fields has a distinct focus. The systems of propositional logic and first-order logic are widely explored for application in the foundations of mathematics. The classical logic systems such as second-order logic or infinitary logic and nonclassical logic systems such as intuitionistic logic are also studied in this field. This book provides comprehensive insights into the field of mathematical logic. It presents the complex subject of mathematical logic in the most comprehensible and easy to understand language. In this book, constant effort has been made to make the understanding of the difficult concepts as easy and informative as possible, for the readers.

Author: Ira Rosenbaum

Publisher:

ISBN:

Category: Logic, Symbolic and mathematical

Page: 98

View: 360

Author: Stephen Cole Kleene

Publisher: Courier Corporation

ISBN:

Category: Mathematics

Page: 398

View: 629

Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.

Author: A. H. Lightstone

Publisher: Englewood Cliffs, N.J. : Prentice-Hall

ISBN:

Category: Algebra, Abstract

Page: 246

View: 613

Author: Cenzer Douglas

Publisher: World Scientific

ISBN:

Category: Mathematics

Page: 224

View: 321

Author: Bertrand Russell

Publisher: Spokesman Books

ISBN:

Category: Mathematics

Page: 208

View: 444

Bertrand Russell is probably the most important philosopher of mathematics in the 20th century. He brought together his formidable knowledge of the subject and skills as a gifted communicator to provide a classic introduction to the philosophy of mathematics.

Author: Gerson B. Robison

Publisher: Prentice Hall

ISBN:

Category: Logic, Symbolic and mathematical

Page: 212

View: 154